Uncertainty-based learning of acoustic models from noisy data
نویسندگان
چکیده
We consider the problem of acoustic modeling of noisy speech data, where the uncertainty over the data is given by a Gaussian distribution. While this uncertainty has been exploited at the decoding stage via uncertainty decoding, its usage at the training stage remains limited to static model adaptation. We introduce a new Expectation Maximisation (EM) based technique, which we call uncertainty training, that allows us to train Gaussian mixture models (GMMs) or hidden Markov models (HMMs) directly from noisy data with dynamic uncertainty. We evaluate the potential of this technique for a GMM-based speaker recognition task on speech data corrupted by real-world domestic background noise, using a state-of-the-art signal enhancement technique and various uncertainty estimation techniques as a front-end. Compared to conventional training, the proposed training algorithm results in 1% to 2% absolute improvement in speaker recognition accuracy by training from either matched, unmatched or multi-condition noisy data. This algorithm is also applicable with minor modifications to maximum a posteriori (MAP) or maximum likelihood linear regression (MLLR) acoustic model adaptation from noisy data and to other data than audio.
منابع مشابه
Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملThe effects of traffic noise on memory and auditory-verbal learning in Persian language children
Background: Acoustic noise is one of the universal pollutants of modern society. Although the high level of noise adverse effects on human hearing has been known for many years, non-auditory effects of noise such as effects on cognition, learning, memory and reading, especially on children, have been less considered. Factors which have negative impact on these features can also have a negat...
متن کاملData Augmentation for Training of Noise Robust Acoustic Models
In this paper we analyse ways to improve the acoustic models based on deep neural networks with the help of data augmentation. These models are used for speech recognition in a priori unknown possibly noisy acoustic environment (with the presence of office or home noise, street noise, babble, etc.) and may deal with both the headset and distant microphone recordings. We compare acoustic models ...
متن کاملUncertainty Decoding with Adaptive Sampling for Noise Robust DNN-Based Acoustic Modeling
Although deep neural network (DNN) based acoustic models have obtained remarkable results, the automatic speech recognition (ASR) performance still remains low in noise and reverberant conditions. To address this issue, a speech enhancement front-end is often used before recognition to reduce noise. However, the front-end cannot fully suppress noise and often introduces artifacts that are limit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Speech & Language
دوره 27 شماره
صفحات -
تاریخ انتشار 2013